
MODEL CATEGORIES

Abstract.

1. Lecture 1

All categories are assumed to be small • with limits and colimits. small or locally
small?Given a category C we can construct the arrow category Arr(C)• whose objects are arrows in C
Hovey uses
Map(C)

and morphisms are commutative squares.

Definition 1.1. Let C be a category.

(1) A morphism f in C is said to be a retract of a map g in C if there is a commutative diagram
of the form,

A −−−−→ C −−−−→ Ayf yg yf
B −−−−→ D −−−−→ B

(2) A functorial factorisation is an ordered pair (α, β) of functors Arr(C) → Arr(C) such that

f = β(f) ◦ α(f) for all f in Arr(C). That is, any A
f→ B in Arr(C) can be decomposed as

A
β(f)−→ C

α(f)−→ B, where C is some object in C.
(3) Let i : A→ B and p : X → Y be morphism in C. We say that i has left lifting property with

respect to p and that p has right lifting property with respect to i if for every commutative
diagram,

A
f−−−−→ Xyi yp

B
g−−−−→ Y

there is a lift h : B → X such that hi = f and ph = g.

Definition 1.2. A model structure on a category C is three subcategories of C called weak equivalences,
cofibration, and fibrations, and two functorial factorisations (α, β) and (γ, δ) satifying the following
properties:

(1) (2-out-of-3) If f and g are morphisms of C such that gf is defined and two of f , g, and gf
are weak equivalences, then so is the third.

(2) (Retracts) If f and g are morphisms of C such that f is a retract of g and g is a weak
equivalence, cofibration, or fibration, then so is f .

(3) (Lifting) Define a map to be a trivial cofibration if it is both a cofibration and a weak
equivalence. Similarly, define a map to be a trivial fibration if it is both a fibration and
a weak equivalence. Then trivial cofibrations have the left lifting property with respect to
fibrations, and cofibrations the left lifting property with respect to trivial fibrations.

(4) (Factorisation) For any morphism f , α(f) is a cofibration, β(f) is a trivial fibration, γ(f)
is a trivial cofibration, and δ(f) is a fibration.

Essentially, (4) says that any morphism in C can be factorised as a cofibration followed by a trivial
fibration, or a trivial cofibration followed by a fibration:
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2 MODEL CATEGORIES

f = β(f)
Trivial Fibration

◦ α(f)
Cofibration

= δ(f)
Fibration

◦ γ(f)
Trivial Cofibration

Definition 1.3. A category C with a model structure and in which all small limits and colimits exist
is called a model category.

Some remarks about the dual model structure, product structure. Some examples (perhaps non-
explicit).

Lemma 1.4. (The Retract Argument). Let f be a morphism in C such that f = p ◦ i, and f has the
left lifting property with respect p. Then, f is a retract of i.

Proof. Since f has the left lifting property with respect to p, we have the following commutative
diagram,

A B

C C

f

i

pr

Then, the following diagram finishes the proof,

A A A

C B C

f i f

r p

�

Lemma 1.5. f is a cofibration (trivial cofibrations) if and only if f has the left lifting property with
respect to trivial fibrations (fibrations).

Proof. Clearly, cofibration have the left lifting property with respect to trivial fibrations. For the
converse, let f be morphism which has the left lifting property with respect to trivial fibrations.
Then, using the functorial factorisation, f = β(f) ◦ α(f). Since, f has the left lifting property with
respect to β(f), by the retract argument f is a retract of α(f) and hence, a trivial fibration. �

Corollary 1.6. Let C be a model category. Cofibration (trivial cofibrations) are closed under pushouts.
Dually, fibrations (trivial fibrations) are closed under pullbacks.

Proof. Follows from the universal property of pushouts (pullbacks). �

Remark 1.7. If C is a model category, it has both an initial object (the colimit of the empty diagram)
and a final object (the limit of the empty diagram). An object of C is called cofibrant if the map
from the inital object 0 to it is a cofibration. Dually, an object is called fibrant if the map to the final
object from it is a fibration.

Moreover, if 0
f→ B is any object in C, we have a functorial factorisation 0

α(f)→ B′
β(f)→ B, with α(f)

a cofibration. Then, B′ is called the cofibrant replacement of B. The notion of a fibrant replacement
is defined similarly by considering the map to final object and the functorial factorisation (γ, δ).
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Lemma 1.8. (Ken Brown’s lemma). Suppose C is a model category and D is a category with weak
equivalences (that satisfy the two out of three property). Suppose F : C → D is a functor which takes
trivial cofibrations between cofibrant objects • to weak equivalences. Then, F takes all weak equivalencesThis has to be de-

fined between cofibrant objects to weak equivalences.

Proof. Let f : A → B be a weak equivalence between cofibrant objects. We wish to show that F (f)
is also a weak equivalence.

Let AqB denote the pushout of A,B over the initial object. We have the map (f, IdB) : AqB → B.
Using the functorial factorisation, this can be factored as a cofibration q followed by a trivial fibration
p. This gives us the following commutative diagram,• This diagram will

need positioningNote that i1, i2, being pushouts of cofibrations, are cofibrations themselves. By the 2-out-of-3
property, as IdB , p are weak equivalences, so is qi2. Similarly, qi1 is a weak equivalence as f, p
are weak equivalences. Thus, qi1 and qi2 are trivial cofibrations. So, F (qi1) and F (qi2) are weak
equivalences. As, F (pqi2) = F (IdB), we see that F (p) is a weak equivalence. Hence, F (f) = F (pqi1)
is also a weak equivalence �

2. Lecture 2

Definition 2.1. Suppose C is a category with a subcategory of equivalences W. We define the
homotopy ”category”• Ho C as follows. Form the free category F (C,W−1) on the arrows of C and the pre-category?

reversals of arrows in W. An object of F (C,W−1) is an object of C, and a morphism is a finite string
of composable arrows (f1, f2, . . . , fn), where fi is either an arrow of C or the reversal w−1

i of an arrow
wi of W. The empty string at a particular object is the identity at that object, and composition is
defined by concatenation of strings. Now, define Ho C to be the quotient category of F (C,W−1) by
the relations 1A = (1A) for all object A, (f, g) = (g ◦ f) for all composable arrows f, g of C, and
1domw = (w,w−1) and 1codomw = (w−1, w) for all w ∈ W.

Note that there is a functor γ : C → Ho C which is identity on objects and takes morphisms of W
to isomorphisms. Some discussion of duals and products.

The category Ho C has the following universal property.

Lemma 2.2. Let C be a category with a subcategory W.

(1) If F : C → D is a functor that sends maps of W to isomorphisms, then there is a unique
functor HoF : Ho C → D such that (HoF ) ◦ γ = F .

(2) Suppose δ : C → E is a functor that takes maps ofW to isomorphisms and enjoys the universal
property of part(i). Then there is a unique isomorphism F : Ho C → E such that F ◦ γ = δ.

(3) The correspondence of part(i) induces an isomorphism of categories between the category of
functors Ho C → D and natural transformations and the category of functors C → D that take
maps of W to isomorphisms and natural transformations.

Lemma 2.3. Suppose C is a model category. Consider the following three subcategories: Cc = cofibrant objects of C.
Cf = fibrant objects of C
Ccf = simultaneously cofibrant and fibrant objects of C.


Then the inclusion functors equivalence of categories,

Ho Cc

Ho Ccf Ho C

Ho Cf

Definition 2.4. Let C be a model category, and f, g : B → X be two maps.
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(1) A cylinder object for B is a factorisation of the fold map ∇ : B q B → B into a cofibration

B qB i0+i1→ B′ followed by a weak equivalence B′
s→ B.

(2) A path object for X is a factorisation of the diagonal map ∆ : X → X × X into a weak

equivalence X
r→ X ′ followed by a fibration X ′

p0,p1→ X ×X.
(3) A left homotopy from f to g is a map H : B′ → X for some cylinder object B′ for B such

that Hi0 = f and Hi1 = g. We write f
l∼ g, if a left homotopy exists.

(4) A right homotopy from f to g is a map K : B → X ′ for some path object X ′ for X such that

p0K = f and p1K = g. We write f
r∼ g, if a right homotopy exists.

(5) We say that f and g are homotopic, and write f ∼ g is they are both left and right homotopic.
(6) f is a homotopy equivalence if there is a map h : X → B such that hf ∼ 1B and fh ∼ 1X .

3. Lecture 3

Proposition 3.1. Let C be a model categorym and f, g : B → X be two maps.

(1) If f
l∼ g and h : X → Y , then hf

l∼ hg. Dually, if f
r∼ g and h : A→ B, then fh

r∼ gh.

(2) If X is fibrant, f
l∼ g, and h : A → B, then fh

l∼ gh. Dually, if B is cofibrant, f
r∼ g, and

h : X → Y , then hf
r∼ hg.

(3) If B is cofibrant, then left homotopy is an equivalence relation on C(B,X). Dually, if X is
fibrant, then right homotopy is an equivalence relation on C(B,X).

(4) If B is cofibrant and h : X → Y is a trivial fibration or a weak equivalence of fibrant objects,
then h induces an isomorphism,

C(B,X)/
l∼
∼=→ C(B, Y )/

l∼ .

Dually, if X is fibrant and h : A→ B is a trivial cofibration or a weak equivalence of cofibrant
objects, then h induces an isomorphism,

C(B,X)/
r∼
∼=→ C(B, Y )/

r∼ .

(5) If B is cofibrant, then f
l∼ g implies f

r∼ g. Furthermore, if X ′ is any path object for X, then
there is a right homotopy K : B → X ′ from f to g. Dually, if X is a fibrant object, then

f
r∼ g implies f

l∼ g, and there is a left homotopy from f to g using any cylinder object for
B.

Corollary 3.2. If C is a model category, B is a cofibrant object, and X is a fibrant object, then left
homotopy and right homotopy relations coincide on C(B,X) and are equivalence relations on it.

Corollary 3.3. The homotopy relation in Ccf is an equivalence relation. Hence the category Ccf/ ∼
exits.

4. Lecture 4

Proposition 4.1. A map in Ccf is a weak equivalence if and only if it is a homotopy equivalence.

Theorem 4.2. Let C be a model category. Let γ : C → Ho C denote the canonical functor, Q denote
the cofibrant replacement functor of C and R denote the fibrant replacement functor.

(1) The inclusion Ccf → C induces an equivalence of categories

Ccf/ ∼
∼=→ Ho Ccf → Ho C.

(2) There are natural isomorphisms

Ho C(X,Y ) ∼= C(QRX,QRY )/ ∼∼= C(QX,RY )/ ∼ .

(3) if f : A→ B is a map in C such that γ(f) is an isomorphism, then f is a weak equivalence.
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Quillen Functors.

Definition 4.3. Let C and D be model categories.

(1) F : C → D is called a left Quillen functor if F is a left adjoint and preserves trivial cofibrations
and cofibrations.

(2) U : D → C is called a right Quillen functor if U is a right adjoint and preserves trivial
fibrations and fibrations.

(3) Let (F,U, φ) be an adjunction from C to D. It is called a Quillen adjunction if F is a left
Quillen functor.

Derived Functors.

Definition 4.4. Let C and D be model categories.

(1) Let F : C → D be a left Quillen functor. The total left derived functor LF of F is the
composite

Ho C HoQ→ Ho Cc
HoF→ HoD.

(2) Similarly, the the total right derived functor RU of a right Quillen functor U : D → C is the
composite

HoD HoR→ HoDf
HoU→ Ho C.

Quillen Equivalence.

Definition 4.5. A Quillen adjunction (F,U, φ) : C → D is called a Quillen equivalence if for all
cofibrant X in C and fibrant Y in D, a map f : FX → Y is a weak equivalence in D if and only if
φ(f) : X → UY is a weak equivalence in C.

5. Lecture 5

6. Lecture 6

Definition 6.1. Let I be a class of maps in C.
(1) A map in C is I-injective if it has the right lifting property with respect to all maps in I. The

class of I-injective maps is denoted by I-inj.
(2) A map is I-projective if it has the left lifting property with respect to all maps in I. The class

of I-projective maps is denoted by I-proj.
(3) A map is an I-cofibration if it the left lifting property with respect to every map in I-inj. The

class of I-cofibrations is denoted by (I-inj)-proj.
(4) A map is an I-fibration if it has the right lifting property with respect to every map in I-proj.

The class of I-fibrations is denoted by (I-proj)-inj.

Example 6.2. If C is a model category then,• align this list!

I = class of fibrations.
I-proj = class of trivial cofibrations.
(I-proj)-inj = class of fibrations.

Definition 6.3. Let C be a category with all small colimits and λ be an ordinal. A λ-sequence X is
a colimit preserving functor X : λ→ C,

X0 → X1 → . . .→ Xβ → . . . .

As X preserves colimits, for all limit ordinals γ < λ, the induced map,

colimβ<γXβ → Xγ

is an isomorphism. The map X0 → colimβ<λXβ is called a composition of the λ-sequence.
If all Xβ → Xβ+1 for β + 1 < λ, lie in some collection D of morphisms of C, then the composition

X0 → colimβ<λXβ is called a transfinite composition of maps in D.
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Definition 6.4. Let I be a set of maps in C. A relative I-cell complex is a transfinite composition of
pushouts of elements of I. That is, if f : A→ B is a relative I-cell complex, then there is a λ-sequence
X : λ → C such that f is a composition of X and such that, for each β with β + 1 < λ, there is a
pushout square,

Cβ Xβ

Cβ+1 Xβ+1

gβ

with gβ ∈ I. The collection of relative I-cell complexes is denoted by I-cell. If 0 → A is a relative
I-cell complex then A is said to be an I-cell complex.

Definition 6.5. Let γ be a cardinal. An ordinal α is called γ-filtered if it is a limit ordinal and if for
A ⊂ α, |A| ≤ γ then supA < α.

For a partially ordered set A, a subset B is called cofinal if for all a ∈ A there is a b ∈ B such that
a ≤ b. The cofinality of A is the least of the cardinalities of cofinal subsets of A. With this in mind
we note that an ordinal α is γ-filtered if and only if the cofinality of α is greater than γ.

7. Lecture 7

Definition 7.1. Suppose C is a category with small colimits and D is a collection of morphisms of
C, A is an object of C and κ be an ordinal. We say that A is κ-small relative to D if for all κ-filtered
ordinals λ and λ-sequences,

X0 → X1 → . . .→ Xβ → . . . .

such that Xβ → Xβ+1 is in D for β + 1 < λ, the map

colimβ<λC(A,Xβ)→ C(A, colimβ<λ)

is an isomorphism.

Essentially, A is κ-small realtive to D if C(A,−) preserves colimits over κ-filtered ordinals.

Lemma 7.2. Let I be a class of maps in a category C with all small colimits. Then I-cell ⊆ I-cof.

Lemma 7.3. Suppose λ is an ordinal and X : λ→ C is a λ-sequence such that Xβ → Xβ+1 is either
a pushout of a map in I or an isomorphism. Then the transfinite composition of X is a relative I-cell
complex.

Lemma 7.4. Let C be a category with all small colimits and I be a set of maps in C. Then I-cell is
closed under transfinite composition.

Lemma 7.5. Let C be a category with all small colimits and I be a set of maps in C. Pushout of
coproducts of maps in I is in I-cell.

Theorem 7.6. (The Small Object Argument). Let C contain all small colimits and I is a set of
maps in C. Suppose domains of maps of I are small relative to I-cell. Then there exists a functorial
factorisation (γ, δ) on C such that for all f ∈ C, γ(f) is in I-cell and δ(f) is in I-inj.
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