MODEL CATEGORIES

Abstract.

1. Lecture 1

All categories are assumed to be small • with limits and colimits.

Given a category \mathcal{C} we can construct the arrow category $Arr(\mathcal{C})$ whose objects are arrows in \mathcal{C} and morphisms are commutative squares.

small or locally small? Hovey uses Map(C)

Definition 1.1. Let \mathcal{C} be a category.

(1) A morphism f in C is said to be a *retract* of a map g in C if there is a commutative diagram of the form,

$$\begin{array}{cccc} A & \longrightarrow & C & \longrightarrow & A \\ \downarrow^f & & \downarrow^g & & \downarrow^f \\ B & \longrightarrow & D & \longrightarrow & B \end{array}$$

- (2) A functorial factorisation is an ordered pair (α, β) of functors $Arr(\mathcal{C}) \to Arr(\mathcal{C})$ such that $f = \beta(f) \circ \alpha(f)$ for all f in $Arr(\mathcal{C})$. That is, any $A \xrightarrow{f} B$ in $Arr(\mathcal{C})$ can be decomposed as $A \xrightarrow{\beta(f)} C \xrightarrow{\alpha(f)} B$, where C is some object in C.
- (3) Let $i: A \to B$ and $p: X \to Y$ be morphism in \mathcal{C} . We say that i has left lifting property with respect to p and that p has right lifting property with respect to i if for every commutative diagram,

$$\begin{array}{ccc} A & \stackrel{f}{\longrightarrow} & X \\ \downarrow_i & & \downarrow_p \\ B & \stackrel{g}{\longrightarrow} & Y \end{array}$$

there is a lift $h: B \to X$ such that hi = f and ph = q.

Definition 1.2. A model structure on a category C is three subcategories of C called weak equivalences, cofibration, and fibrations, and two functorial factorisations (α, β) and (γ, δ) satisfying the following properties:

- (1) (2-OUT-OF-3) If f and g are morphisms of \mathcal{C} such that gf is defined and two of f, g, and gf are weak equivalences, then so is the third.
- (2) (Retracts) If f and g are morphisms of C such that f is a retract of g and g is a weak equivalence, cofibration, or fibration, then so is f.
- (3) (LIFTING) Define a map to be a *trivial cofibration* if it is both a cofibration and a weak equivalence. Similarly, define a map to be a *trivial fibration* if it is both a fibration and a weak equivalence. Then trivial cofibrations have the left lifting property with respect to fibrations, and cofibrations the left lifting property with respect to trivial fibrations.
- (4) (FACTORISATION) For any morphism f, $\alpha(f)$ is a cofibration, $\beta(f)$ is a trivial fibration, $\gamma(f)$ is a trivial cofibration, and $\delta(f)$ is a fibration.

Essentially, (4) says that any morphism in C can be factorised as a cofibration followed by a trivial fibration, or a trivial cofibration followed by a fibration:

$$f = \underset{\text{Trivial Fibration }}{\beta(f)} \circ \underset{\text{Cofibration}}{\alpha(f)}$$

$$= \underset{\text{Fibration Trivial Cofibration}}{\beta(f)} \circ \underset{\text{Trivial Cofibration}}{\gamma(f)}$$

Definition 1.3. A category C with a model structure and in which all small limits and colimits exist is called a *model category*.

Some remarks about the dual model structure, product structure. Some examples (perhaps non-explicit).

Lemma 1.4. (The Retract Argument). Let f be a morphism in C such that $f = p \circ i$, and f has the left lifting property with respect p. Then, f is a retract of i.

Proof. Since f has the left lifting property with respect to p, we have the following commutative diagram,

$$\begin{array}{ccc}
A & \xrightarrow{i} & B \\
\downarrow^{f} & & \downarrow^{p} \\
C & & & C
\end{array}$$

Then, the following diagram finishes the proof,

$$\begin{array}{cccc}
A & \longrightarrow & A & \longrightarrow & A \\
\downarrow^f & & \downarrow_i & & \downarrow^f \\
C & \stackrel{r}{\longrightarrow} & B & \stackrel{p}{\longrightarrow} & C
\end{array}$$

Lemma 1.5. *f* is a cofibration (trivial cofibrations) if and only if *f* has the left lifting property with respect to trivial fibrations (fibrations).

Proof. Clearly, cofibration have the left lifting property with respect to trivial fibrations. For the converse, let f be morphism which has the left lifting property with respect to trivial fibrations. Then, using the functorial factorisation, $f = \beta(f) \circ \alpha(f)$. Since, f has the left lifting property with respect to $\beta(f)$, by the retract argument f is a retract of $\alpha(f)$ and hence, a trivial fibration.

Corollary 1.6. Let C be a model category. Cofibration (trivial cofibrations) are closed under pushouts. Dually, fibrations (trivial fibrations) are closed under pullbacks.

Proof. Follows from the universal property of pushouts (pullbacks).

Remark 1.7. If \mathcal{C} is a model category, it has both an initial object (the colimit of the empty diagram) and a final object (the limit of the empty diagram). An object of \mathcal{C} is called *cofibrant* if the map from the inital object 0 to it is a cofibration. Dually, an object is called *fibrant* if the map to the final object from it is a fibration.

Moreover, if $0 \xrightarrow{f} B$ is any object in \mathcal{C} , we have a functorial factorisation $0 \xrightarrow{\alpha(f)} B' \xrightarrow{\beta(f)} B$, with $\alpha(f)$ a cofibration. Then, B' is called the *cofibrant replacement* of B. The notion of a fibrant replacement is defined similarly by considering the map to final object and the functorial factorisation (γ, δ) .

This has to be defined

Lemma 1.8. (Ken Brown's lemma). Suppose C is a model category and D is a category with weak equivalences (that satisfy the two out of three property). Suppose $F: \mathcal{C} \to \mathcal{D}$ is a functor which takes trivial cofibrations between cofibrant objects • to weak equivalences. Then, F takes all weak equivalences between cofibrant objects to weak equivalences.

Proof. Let $f:A\to B$ be a weak equivalence between cofibrant objects. We wish to show that F(f)is also a weak equivalence.

Let $A \coprod B$ denote the pushout of A, B over the initial object. We have the map $(f, Id_B) : A \coprod B \to B$. Using the functorial factorisation, this can be factored as a cofibration q followed by a trivial fibration p. This gives us the following commutative diagram,•

This diagram will

Note that i_1, i_2 , being pushouts of cofibrations, are cofibrations themselves. By the 2-out-of-3 need positioning property, as Id_B , p are weak equivalences, so is qi_2 . Similarly, qi_1 is a weak equivalence as f, pare weak equivalences. Thus, qi_1 and qi_2 are trivial cofibrations. So, $F(qi_1)$ and $F(qi_2)$ are weak equivalences. As, $F(pqi_2) = F(Id_B)$, we see that F(p) is a weak equivalence. Hence, $F(f) = F(pqi_1)$ is also a weak equivalence

2. Lecture 2

Definition 2.1. Suppose \mathcal{C} is a category with a subcategory of equivalences \mathcal{W} . We define the homotopy "category" • Ho \mathcal{C} as follows. Form the free category $F(\mathcal{C}, \mathcal{W}^{-1})$ on the arrows of \mathcal{C} and the pre-category? reversals of arrows in \mathcal{W} . An object of $F(\mathcal{C},\mathcal{W}^{-1})$ is an object of \mathcal{C} , and a morphism is a finite string of composable arrows (f_1, f_2, \ldots, f_n) , where f_i is either an arrow of \mathcal{C} or the reversal w_i^{-1} of an arrow w_i of W. The empty string at a particular object is the identity at that object, and composition is defined by concatenation of strings. Now, define Ho \mathcal{C} to be the quotient category of $F(\mathcal{C}, \mathcal{W}^{-1})$ by the relations $1_A = (1_A)$ for all object A, $(f,g) = (g \circ f)$ for all composable arrows f,g of \mathcal{C} , and $1_{\text{dom}w} = (w, w^{-1})$ and $1_{\text{codom}w} = (w^{-1}, w)$ for all $w \in \mathcal{W}$.

Note that there is a functor $\gamma: \mathcal{C} \to \operatorname{Ho} \mathcal{C}$ which is identity on objects and takes morphisms of \mathcal{W} to isomorphisms. Some discussion of duals and products.

The category $\operatorname{Ho} \mathcal{C}$ has the following universal property.

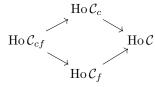
Lemma 2.2. Let C be a category with a subcategory W.

- (1) If $F: \mathcal{C} \to \mathcal{D}$ is a functor that sends maps of \mathcal{W} to isomorphisms, then there is a unique functor Ho $F: \text{Ho } \mathcal{C} \to \mathcal{D} \text{ such that } (\text{Ho } F) \circ \gamma = F.$
- (2) Suppose $\delta: \mathcal{C} \to \mathcal{E}$ is a functor that takes maps of W to isomorphisms and enjoys the universal property of part(i). Then there is a unique isomorphism $F: \operatorname{Ho} \mathcal{C} \to \mathcal{E}$ such that $F \circ \gamma = \delta$.
- (3) The correspondence of part(i) induces an isomorphism of categories between the category of functors $\operatorname{Ho} \mathcal{C} \to \mathcal{D}$ and natural transformations and the category of functors $\mathcal{C} \to \mathcal{D}$ that take maps of W to isomorphisms and natural transformations.

Lemma 2.3. Suppose C is a model category. Consider the following three subcategories:

$$\begin{pmatrix} \mathcal{C}_c & = & cofibrant \ objects \ of \ \mathcal{C}. \\ \mathcal{C}_f & = & fibrant \ objects \ of \ \mathcal{C} \\ \mathcal{C}_{cf} & = & simultaneously \ cofibrant \ and \ fibrant \ objects \ of \ \mathcal{C}. \end{pmatrix}$$

Then the inclusion functors equivalence of categories,



Definition 2.4. Let \mathcal{C} be a model category, and $f, g : B \to X$ be two maps.

- (1) A cylinder object for B is a factorisation of the fold map $\nabla : B \coprod B \to B$ into a cofibration $B \coprod B \overset{i_0+i_1}{\to} B'$ followed by a weak equivalence $B' \overset{s}{\to} B$.
- (2) A path object for X is a factorisation of the diagonal map $\Delta: X \to X \times X$ into a weak equivalence $X \stackrel{r}{\to} X'$ followed by a fibration $X' \stackrel{p_0,p_1}{\to} X \times X$.
- (3) A left homotopy from f to g is a map $H: B' \to X$ for some cylinder object B' for B such that $Hi_0 = f$ and $Hi_1 = g$. We write $f \stackrel{l}{\sim} g$, if a left homotopy exists.
- (4) A right homotopy from f to g is a map $K: B \to X'$ for some path object X' for X such that $p_0K = f$ and $p_1K = g$. We write $f \stackrel{r}{\sim} g$, if a right homotopy exists.
- (5) We say that f and g are homotopic, and write $f \sim g$ is they are both left and right homotopic.
- (6) f is a homotopy equivalence if there is a map $h: X \to B$ such that $hf \sim 1_B$ and $fh \sim 1_X$.

3. Lecture 3

Proposition 3.1. Let C be a model categorym and $f, g : B \to X$ be two maps.

- (1) If $f \stackrel{l}{\sim} g$ and $h: X \to Y$, then $hf \stackrel{l}{\sim} hg$. Dually, if $f \stackrel{r}{\sim} g$ and $h: A \to B$, then $fh \stackrel{r}{\sim} gh$.
- (2) If X is fibrant, $f \stackrel{l}{\sim} g$, and $h: A \to B$, then $fh \stackrel{l}{\sim} gh$. Dually, if B is cofibrant, $f \stackrel{r}{\sim} g$, and $h: X \to Y$, then $hf \stackrel{r}{\sim} hg$.
- (3) If B is cofibrant, then left homotopy is an equivalence relation on C(B, X). Dually, if X is fibrant, then right homotopy is an equivalence relation on C(B, X).
- (4) If B is cofibrant and $h: X \to Y$ is a trivial fibration or a weak equivalence of fibrant objects, then h induces an isomorphism,

$$\mathcal{C}(B,X)/\stackrel{l}{\sim} \stackrel{\cong}{\to} \mathcal{C}(B,Y)/\stackrel{l}{\sim}.$$

Dually, if X is fibrant and $h: A \to B$ is a trivial cofibration or a weak equivalence of cofibrant objects, then h induces an isomorphism,

$$\mathcal{C}(B,X)/\stackrel{r}{\sim} \stackrel{\cong}{\to} \mathcal{C}(B,Y)/\stackrel{r}{\sim}.$$

(5) If B is cofibrant, then $f \stackrel{l}{\sim} g$ implies $f \stackrel{r}{\sim} g$. Furthermore, if X' is any path object for X, then there is a right homotopy $K: B \to X'$ from f to g. Dually, if X is a fibrant object, then $f \stackrel{r}{\sim} g$ implies $f \stackrel{l}{\sim} g$, and there is a left homotopy from f to g using any cylinder object for B.

Corollary 3.2. If C is a model category, B is a cofibrant object, and X is a fibrant object, then left homotopy and right homotopy relations coincide on C(B,X) and are equivalence relations on it.

Corollary 3.3. The homotopy relation in C_{cf} is an equivalence relation. Hence the category C_{cf}/\sim exits.

4. Lecture 4

Proposition 4.1. A map in C_{cf} is a weak equivalence if and only if it is a homotopy equivalence.

Theorem 4.2. Let C be a model category. Let $\gamma: C \to \operatorname{Ho} C$ denote the canonical functor, Q denote the cofibrant replacement functor of C and R denote the fibrant replacement functor.

(1) The inclusion $C_{cf} \to C$ induces an equivalence of categories

$$\mathcal{C}_{cf}/\sim \stackrel{\cong}{\to} \operatorname{Ho} \mathcal{C}_{cf} \to \operatorname{Ho} \mathcal{C}.$$

(2) There are natural isomorphisms

$$\operatorname{Ho} \mathcal{C}(X,Y) \cong \mathcal{C}(QRX,QRY)/\sim \cong \mathcal{C}(QX,RY)/\sim.$$

(3) if $f: A \to B$ is a map in C such that $\gamma(f)$ is an isomorphism, then f is a weak equivalence.

5

Quillen Functors.

Definition 4.3. Let \mathcal{C} and \mathcal{D} be model categories.

- (1) $F: \mathcal{C} \to \mathcal{D}$ is called a *left Quillen functor* if F is a left adjoint and preserves trivial cofibrations and cofibrations.
- (2) $U: \mathcal{D} \to \mathcal{C}$ is called a *right Quillen functor* if U is a right adjoint and preserves trivial fibrations and fibrations.
- (3) Let (F, U, ϕ) be an adjunction from \mathcal{C} to \mathcal{D} . It is called a *Quillen adjunction* if F is a left Quillen functor.

Derived Functors.

Definition 4.4. Let \mathcal{C} and \mathcal{D} be model categories.

(1) Let $F: \mathcal{C} \to \mathcal{D}$ be a left Quillen functor. The total left derived functor LF of F is the composite

$$\operatorname{Ho} \mathcal{C} \stackrel{\operatorname{Ho} Q}{\to} \operatorname{Ho} \mathcal{C}_c \stackrel{\operatorname{Ho} F}{\to} \operatorname{Ho} \mathcal{D}.$$

(2) Similarly, the the total right derived functor RU of a right Quillen functor $U: \mathcal{D} \to \mathcal{C}$ is the composite

$$\operatorname{Ho} \mathcal{D} \stackrel{\operatorname{Ho} R}{\to} \operatorname{Ho} \mathcal{D}_f \stackrel{\operatorname{Ho} U}{\to} \operatorname{Ho} \mathcal{C}.$$

Quillen Equivalence.

Definition 4.5. A Quillen adjunction $(F, U, \phi) : \mathcal{C} \to \mathcal{D}$ is called a *Quillen equivalence* if for all cofibrant X in \mathcal{C} and fibrant Y in \mathcal{D} , a map $f : FX \to Y$ is a weak equivalence in \mathcal{D} if and only if $\phi(f) : X \to UY$ is a weak equivalence in \mathcal{C} .

- 5. Lecture 5
- 6. Lecture 6

Definition 6.1. Let I be a class of maps in \mathcal{C} .

- (1) A map in C is *I-injective* if it has the right lifting property with respect to all maps in I. The class of I-injective maps is denoted by I-inj.
- (2) A map is *I-projective* if it has the left lifting property with respect to all maps in *I*. The class of *I*-projective maps is denoted by *I*-proj.
- (3) A map is an I-cofibration if it the left lifting property with respect to every map in I-inj. The class of I-cofibrations is denoted by (I-inj)-proj.
- (4) A map is an I-fibration if it has the right lifting property with respect to every map in I-proj. The class of I-fibrations is denoted by (I-proj)-inj.

Example 6.2. If \mathcal{C} is a model category then,

align this list!

I = class of fibrations.

I-proj = class of trivial cofibrations.

(I-proj)-inj = class of fibrations.

Definition 6.3. Let \mathcal{C} be a category with all small colimits and λ be an ordinal. A λ -sequence X is a colimit preserving functor $X: \lambda \to \mathcal{C}$,

$$X_0 \to X_1 \to \ldots \to X_\beta \to \ldots$$

As X preserves colimits, for all limit ordinals $\gamma < \lambda$, the induced map,

$$\operatorname{colim}_{\beta < \gamma} X_{\beta} \to X_{\gamma}$$

is an isomorphism. The map $X_0 \to \operatorname{colim}_{\beta < \lambda} X_\beta$ is called a *composition* of the λ -sequence.

If all $X_{\beta} \to X_{\beta+1}$ for $\beta+1 < \lambda$, lie in some collection \mathcal{D} of morphisms of \mathcal{C} , then the composition $X_0 \to \operatorname{colim}_{\beta < \lambda} X_{\beta}$ is called a *transfinite composition* of maps in \mathcal{D} .

Definition 6.4. Let I be a set of maps in \mathcal{C} . A relative I-cell complex is a transfinite composition of pushouts of elements of I. That is, if $f: A \to B$ is a relative I-cell complex, then there is a λ -sequence $X: \lambda \to \mathcal{C}$ such that f is a composition of X and such that, for each β with $\beta + 1 < \lambda$, there is a pushout square,

$$C_{\beta} \xrightarrow{X_{\beta}} X_{\beta}$$

$$\downarrow^{g_{\beta}} \qquad \downarrow$$

$$C_{\beta+1} \xrightarrow{X_{\beta+1}} X_{\beta+1}$$

with $g_{\beta} \in I$. The collection of relative *I*-cell complexes is denoted by *I*-cell. If $0 \to A$ is a relative *I*-cell complex then A is said to be an *I*-cell complex.

Definition 6.5. Let γ be a cardinal. An ordinal α is called γ -filtered if it is a limit ordinal and if for $A \subset \alpha$, $|A| \leq \gamma$ then $\sup A < \alpha$.

For a partially ordered set A, a subset B is called *cofinal* if for all $a \in A$ there is a $b \in B$ such that $a \leq b$. The *cofinality* of A is the least of the cardinalities of cofinal subsets of A. With this in mind we note that an ordinal α is γ -filtered if and only if the cofinality of α is greater than γ .

7. Lecture 7

Definition 7.1. Suppose \mathcal{C} is a category with small colimits and \mathcal{D} is a collection of morphisms of \mathcal{C} , A is an object of \mathcal{C} and κ be an ordinal. We say that A is κ -small relative to \mathcal{D} if for all κ -filtered ordinals λ and λ -sequences,

$$X_0 \to X_1 \to \ldots \to X_\beta \to \ldots$$

such that $X_{\beta} \to X_{\beta+1}$ is in \mathcal{D} for $\beta+1 < \lambda$, the map

$$\operatorname{colim}_{\beta < \lambda} \mathcal{C}(A, X_{\beta}) \to \mathcal{C}(A, \operatorname{colim}_{\beta < \lambda})$$

is an isomorphism.

Essentially, A is κ -small realtive to \mathcal{D} if $\mathcal{C}(A,-)$ preserves colimits over κ -filtered ordinals.

Lemma 7.2. Let I be a class of maps in a category C with all small colimits. Then I-cell $\subseteq I$ -cof.

Lemma 7.3. Suppose λ is an ordinal and $X : \lambda \to \mathcal{C}$ is a λ -sequence such that $X_{\beta} \to X_{\beta+1}$ is either a pushout of a map in I or an isomorphism. Then the transfinite composition of X is a relative I-cell complex.

Lemma 7.4. Let C be a category with all small colimits and I be a set of maps in C. Then I-cell is closed under transfinite composition.

Lemma 7.5. Let C be a category with all small colimits and I be a set of maps in C. Pushout of coproducts of maps in I is in I-cell.

Theorem 7.6. (The Small Object Argument). Let C contain all small colimits and I is a set of maps in C. Suppose domains of maps of I are small relative to I-cell. Then there exists a functorial factorisation (γ, δ) on C such that for all $f \in C$, $\gamma(f)$ is in I-cell and $\delta(f)$ is in I-inj.

References

[1] Hovey, Mark. Model Categories, Mathematical Surveys and Monographs 63, AMS.